Cytogenetic characterization of the silverside fish *Odontesthes regia* (Humboldt, 1833) (Teleostei: Atheriniformes: Atherinopsidae) from Iquique, Chile

Caracterización citogenética del pejerrey *Odontesthes regia* (Humboldt, 1833) (Teleostei: Atheriniformes: Atherinopsidae) de Iquique, Chile

Carlos Muñoz¹, Mauro Nirchio²*, Julio E. Pérez³, Ernesto Ron²
Claudio Oliveira⁴ and Irani A. Ferreira⁴

¹Departamento de Ciencias del Mar, Universidad Arturo Prat, Iquique, Chile, Casilla Nº 121
²Escuela de Ciencias Aplicadas del Mar. Universidad de Oriente, Isla de Margarita, Venezuela, Apartado Postal 147
³Instituto Oceanográfico de Venezuela, Universidad de Oriente, Cumaná, Venezuela
⁴Departamento de Morfología, Instituto de Biociências, Universidade Estadual Paulista, 18618-000 Botucatu, São Paulo, Brazil
nirchio@cantv.net

Abstract. This paper describes the karyotype of *Odontesthes regia* by means of Giemsa staining, C-banding, to reveal the distribution of the constitutive heterochromatin, and by Ag-staining and fluorescent *in situ* hybridization (FISH), to locate ribosomal genes (rDNA). The chromosome diploid modal count in the species was 2n = 48. The karyotype is composed of one submetacentric pair (pair 1), 16 subtelocentric pairs (pairs 2 to 17), and 7 acrocentric pairs (pairs 18 to 24). With the exception of pair 1 it was not possible to classify the homologous chromosomes accurately because differences in chromosome size were too slight between adjacent pairs. The distribution of C-banded heterochromatin allowed for a more accurate matching of the majority of chromosomes of the subtelocentric series. Silver staining of metaphase spreads allowed for the identification of Nucleolus Organizer Regions (Ag-NOR) on pair 1. FISH experiments showed that 18S rDNA sequences were located, as expected, in the same chromosome pair identified as the Ag-NOR-bearing one.

Key words: Karyotype, NOR, C-bands, FISH

Resumen. Este trabajo describe el cariotipo de *Odontesthes regia*, por medio de tinción Giemsa, bandeo C, para revelar la distribución de la heterocromatina constitutiva, y por medio de tinción con nitrato de plata e hibridación fluorescente *in situ* (FISH), para localizar genes ribosómicos (rADN). El recuento modal cromosómico diploide en la especie fue de 2n = 48. El cariotipo está compuesto por un par submetacentróncico (par 1), 16 pares subtelocéntricos (pares 2 a 17), y 7 acrocéntricos pares (pares 18 a 24). Con excepción del par 1, no fue posible clasificar con exactitud a los cromosomas homólogos, ya que las diferencias en el tamaño fueron muy pequeñas entre pares adyacentes. La distribución de la heterocromatina por bandeo C permitió aparear a la mayoría de los cromosomas de la serie subtelocéntrica. La tinción con plata de preparaciones metafásicas permitió la identificación de las regiones organizadoras del nucléolo (Ag-RON) en el par 1. Los experimentos FISH mostraron que las secuencias ADNr 18S estaban localizadas, como era de esperar, en el mismo par cromosómico identificado como los portadores de Ag-RON.

Palabras clave: Cariotipo, RON, bandeo-C, FISH

Introduction

The great importance of conservation biology and the need to develop new tools that allow understanding ecosystems, phylectic relationship among taxa and identification of new species, has encouraged scientists to perform new karyological studies in fishes.

Cytogenetic studies of fishes from the South American continent have displayed a considerable expansion in the last years. To date cytogenetic data for 47 families, 278 genera and 1,047 freshwater species and 39 families, 73 genera and 109 marine species are registered (Nirchio & Oliveira 2006), but for Chile, few karylogical studies of fish, in relation with its richness, specially of marine fishes, have been carried out. Among these studies, the contribution of the late Dr. Hugo Campos is of great importance (Arratia & Campos 1997¹, Campos 1972, Cuevas *et al*. 1999, Nirchio & Arratia 2003).

Table 1

Chromosome data of Atheriniformes

<table>
<thead>
<tr>
<th>Species</th>
<th>2n</th>
<th>NF</th>
<th>Karyotype formula</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atherion elymus</td>
<td>48</td>
<td>50</td>
<td>2SM + 10ST + 36A</td>
<td>Arai & Fujiki (1978)</td>
</tr>
<tr>
<td>Atherina monchon</td>
<td>48</td>
<td>54</td>
<td>6SM + 42 ST-A</td>
<td>Vasiliev (1980, 1985)</td>
</tr>
<tr>
<td>B. banariensis</td>
<td>48</td>
<td>52</td>
<td>4M + 44 ST-A</td>
<td>Arai & Koike (1980)</td>
</tr>
<tr>
<td>Bedotia geayi</td>
<td>48</td>
<td>72</td>
<td></td>
<td>Scheel (1972) in Klinkhardt et al. (1995)</td>
</tr>
<tr>
<td>Chirostoma attenuatum</td>
<td>48</td>
<td>76a</td>
<td>4M + 24SM + 2ST + 18A</td>
<td>Alvérez-Espíndola (1994)</td>
</tr>
<tr>
<td>C. estor</td>
<td>48</td>
<td>68</td>
<td>12M + 8SM + 12ST + 16A</td>
<td>Uribe-Alcocer et al. (2002)</td>
</tr>
<tr>
<td>C. jordani</td>
<td>48</td>
<td>68</td>
<td>8M + 12SM + 10ST + 18A</td>
<td>Uribe-Alcocer et al. (2002)</td>
</tr>
<tr>
<td>C. patzcuaro</td>
<td>44</td>
<td>44</td>
<td>12ST + 32A</td>
<td>Uribe-Alcocer et al. (2002)</td>
</tr>
<tr>
<td>C. grandocule</td>
<td>48</td>
<td></td>
<td></td>
<td>Durán-González et al. (1997)</td>
</tr>
<tr>
<td>Membras martinico</td>
<td>48</td>
<td>84</td>
<td>18M + 18SM + 12ST-A</td>
<td>Korth & Fitszimons (1987)</td>
</tr>
<tr>
<td>Menidia berlina</td>
<td>48</td>
<td>74</td>
<td>8M + 18SM + 22ST-A</td>
<td>Korth & Fitszimons (1987)</td>
</tr>
<tr>
<td>M. mendia</td>
<td>48</td>
<td>66</td>
<td>4M + 14SM + 12ST + 18A</td>
<td>Warkentine et al. (1987)</td>
</tr>
<tr>
<td>Odontesthes bonariensis</td>
<td>48</td>
<td>52</td>
<td>4SM + 44 + 46ST</td>
<td>Sola et al. (1988)</td>
</tr>
<tr>
<td>O. regia</td>
<td>48</td>
<td>50</td>
<td>2SM+32ST+14A</td>
<td>Present study</td>
</tr>
<tr>
<td>Telmatherina ladigesis</td>
<td>48</td>
<td>86</td>
<td></td>
<td>Scheel (1972) in Klinkhardt et al. (1995)</td>
</tr>
</tbody>
</table>

Odontesthes regia (Humboldt, 1833) (Teleostei: Atheriniformes) belongs to the Atherinopsidae family and is locally known as “pejerrey” or “pejerrey marino,” and internationally as “sea silverside.” This is an epipelagic species distributed from the north Pacific coast of Peru to the Aysen region, in Chile (Dyer 2000). The species has great economic importance as a fresh staple food (Froese & Pauly 2005). Although the family Atherinopsidae includes 104 species (13 genera), only 17 species have been cytogenetically studied to date (Table 1), demonstrating that cytogenetic studies in this group are still scarce.

As part of a project to study the cytogenetic biodiversity of the Chilean ichthyofauna, this paper is the first report of the karyotype of *O. regia* from Iquique, Chile by means of Giemsa staining, C-banding, silver staining to locate active Nucleolus Organizing Regions (NORs), and FISH to locate the NOR cistrons on the chromosomes.

Materials and methods

A sample comprising five specimens (2 females and 3 males) of *O. regia* was analyzed. Specimens were seineed off the coast of Iquique Bay (20°10.15’S 70°10.18’W). Voucher specimens were kept at the fish collection of Departamento de Ciencias del Mar (MUAP-PO: 0893, 0894, 0895, 0896, 0897), Universidad Arturo Prat, Iquique, Chile.
Chromosome preparations were carried out following the technique described by Bertollo et al. (1978). For the conventional karyotype, the preparations were stained for 20 minutes with 5% Giemsa in a phosphate buffer at pH 6.88. C-bands were obtained according to Sumner (1972). Detection of the Nucleolus Organizer Regions (NORs) was carried out following the silver staining method of Howell & Black (1980), and by FISH according Pinkel et al. (1986). A tilapia (Oreochromis niloticus) 18S rDNA sequence (about 1,800 base pairs) cloned in pGEM-T was labeled by nick translation with biotin-14-dATP according to the manufacturer instructions (Bionick Labelling System-Gibco. BRL). The 18S rDNA sequences were located in the chromosomes by Avidin-N-fluorescein Isothiocyanate (FITC) conjugate, and the signal was enhanced by using biotinilated Anti-avidin goat antibodies following a second round of the Avidin-FITC detection. Chromosomes were counter-stained with Propidium Iodide (50µg/ml) diluted in Antifade.

Mitotic chromosomes were photographed using a digital camera and images were digitally processed with Adobe Photoshop v. 7.0. The karyogram was constructed with chromosomes organized in size-decreasing order. Chromosomes were classified following Levan et al. (1964). Metaphases analyzed by FISH were examined in a Zeiss Axiophot photomicroscope and pictures were taken with a Kodak Gold Ultra 400 ASA film.

Results and discussion

Chromosome diploid modal count was 2n=48, obtained in 82% of all the (107) cells examined. The representative karyogram for the species is shown in Fig. 1A. The karyotype of this species consists of one submetacentric pair (pair 1), 16 subtelocentric pairs (pairs 2 to 17), and 7 acrocentric pairs (pairs 18 to 24). With the exception of pair 1, it was not possible to carry out an accurate classification of chromosomes as homologous pairs due to their similar morphology and slight differences in chromosome size.

According to the most recent review of fish chromosome data, 11.5% of the extant fish species possess a karyotype with 2n = 48 and a variable Fundamental Number (FN) (Klinkhardt et al. 1995). A recent study (Miya et al. 2003) suggests that orders Atheriniformes, Cyprinodontiformes, and Beloniformes constitute a monophyletic group closely related to Mugiliformes and some Perciformes. Considering that the most common diploid number found in Mugiliformes and Perciformes is 2n = 48 (Klinkhardt et al. 1995), it is possible to suggest that the presence of 2n = 48 chromosomes, as observed in *O. regia*, represents a primitive characteristic of the order Atheriniformes. Despite the conserved diploid number in the genus *Odontesthes*, a clear difference in chromosome formulae is observed between *O. bonariensis* and *O. regia*. Sola et al. (1988) and Arai & Kioko (1980) reported the karyotype of *O. bonariensis* as possessing 48 chromosomes with 4 submetacentric and 44 subtelocentric-acrocentric and FN = 52, so determined by considering subtelocentric elements as uniarmed-chromosomes. If for comparative purposes we consider the subtelocentric chromosomes of *O. regia* as uniarmed, the species would have a FN=50, so the differences in chromosome formulae between these two species suggest that their karyotypes could have diverged by rearrangements involving a pericentric inversion to convert a subtelocentric chromosome into a submetacentric or into an acrocentric one, respectively (or vice versa) while at the same time keeping the numeric hypothetical chromosome condition 2n = 48.

C-banded heterochromatin is distributed in a pericentromeric position in all chromosomes except a large positive interstitial band near the centromere in pair 6, and a large telomeric segments in chromosome pairs 3 and 7. Such distribution of C-banded heterochromatin allows for a more accurate, tentatively homologous chromosome pairing in the majority of chromosomes of the subtelocentric series (Fig. 1B).

Silver staining revealed that the Ag-NOR clusters are localized on pair 1 with the Ag-NOR signal located on the tip of their short arms (Fig. 2). Sola et al. (1988) reported the single pair of NORs in *O. bonariensis* as terminal on the short arm of a small-sized submetacentric chromosome.

NOR-silver staining is one of the methods used to locate 18S and 28S rRNA cistrons in chromosomes (Howell & Black 1980). Silver stainability of NORs requires transcriptional activity of the ribosomal genes during the preceding interphase (see Hubbel 1985, Sánchez-Pina et al. 1984, Jimenez et al. 1988), whereas FISH allows for the exact detection of the location and number of ribosomal genes in the chromosome complement.
Figure 1

Cytogenetic characteristics of *Odontesthes regia*. (A) Giemsa stained karyotype. Above pair 1 the same chromosome pair stained with silver nitrate to show the Ag-NORs (black dots). (B) C-banded karyotypes

Figure 2

Silver-stained metaphase of *Odontesthes regia* showing Ag-NOR-bearing chromosomes (arrows)

Figure 3

Metaphase of *Odontesthes regia* showing chromosomes after fluorescent *in situ* hybridization with the 18S rDNA gene. Arrows point out the 18S-bearing chromosomes

Características citogenéticas de *Odontesthes regia*. (A) Cariotipo teñido con Giemsa. Sobre el par 1, el mismo par de cromosomas teñido con nitrato de plata para mostrar las Ag-RON (puntos negros). (B) Cariotipos de bandeó C

Metafases de *Odontesthes regia* teñidas con plata mostrando los cromosomas que tienen Ag-RON (flechas)

Metafase de *Odontesthes regia* mostrando los cromosomas después de hibridación fluorescente *in situ* con el gen 18S rADN. Las flechas indican los cromosomas que llevan el 18S
As far as ribosomic cistrons are concerned, the most frequent localization of NORs in fish chromosomes is terminal on a single chromosome pair (Galetti et al. 1984, Birstein & Vasilev 1987, Klinkhardt et al. 1995), although some taxa exhibit multiple NORs (Foresti et al. 1981, Nirchio et al. 2002, Gaviria et al. 2005, Phillips et al. 1988, Castro et al. 1996). The use of FISH with 18S rDNA probing is a technique extremely well suited to characterize a species; it allows researchers to know whether differences in Ag-NOR number are related only with the differential activities of these NORs, or with different numbers of NORs in the genome of different specimens (Gornung et al. 1997, Nirchio et al. 2003). The FISH experiments performed here show that 18S rDNA signals coincide with signals seen in the Ag-NOR-bearing chromosomes (Fig. 3), indicating that O. regia does not possess additional NOR sites and that all NOR cistrons are active.

Acknowledgments

Consejo de Investigación de Universidad de Oriente (Venezuela), CNPq and FAPESP (Brazil) provided funds to support this study. We are grateful to anonymous reviewers who contributed to the improvement of the final version of the manuscript.

Literature cited

Recibido el 27 de octubre de 2005 y aceptado el 16 de diciembre de 2005